

NGI, SECURITY, and YOU

Bob Aiken
NGI Project Leader
DOE
aiken@er.doe.gov

Security Workshop
October 1997

Points to Remember

- Dynamic Adaptable Virtual Networks and Computational GRIDS are the Future !!
- The NET and NGI are NETS of NETS
- More control by the user will mean more security challenges

Program Goals

- New technologies and services: sponsor research and development in new networking technologies and services in support of the high performance applications requirements
- Testbed(s): build a high performance network infrastructure in support of both network research and science applications research
- Applications: support demonstration of next generation applications requiring advanced networking technologies

GOAL 1: Technologies

- Network Engineering
- QOS
- Security

Goal 1: Network Engineering

- Planning and Simulation
- Monitoring
- Integration
- Data delivery
- Managing Lead User Infrastructure
- Dynamic and Adaptive Networks

Goal 1: QOS (end to end)

- Baseline QOS Architecture
- Admission control, accounting / costing, prioritization
- APIs to see and control QOS
- Drill Down Technologies

Goal 1: Security

- secure and fair means for users to access network resources (e.g. QOS)
- smart network management
- inter-network peering (e.g. surety of routing updates)
- nomadic/remote access
- Public Key Infrastructure (industry interoperable)

Summary: Security Issues for Goal 1

- Multiple security policies
- shared control / management of infrastructure
- adaptive and active networks
- drill down technologies
- QOS enforcement and admission control
- interoperable industry PKIs
- secure multicast and multipath
- privacy / security for network monitoring and management
- common set of evaluation and testing criteria

GOAL 2: TESTBEDS

- 10+ sites at 1000x today's Internet of
 T1 speed
- 100+ sites at 100x today's Internet of ~ T1 speed

Goal 2: 10 sites at 1000x

- end-to-end gigabits and terabits
- end system 1000x interfaces (e.g. HIPPI 64)
- WDM at WAN, LAN and Local Loop
- optical, electrical, hybrid hardware
- (de) aggregation of high speed tributaries
- Operating System (OS) and end system architectures
- 1000x network management tools / capabilities

Goal 2 : 100 sites at 100x

- end-to-end 100 megabits and up
- 100+ Universities, Labs, and Federal Centers
- IPv4 minimum bearer service, IPv6 in future
- ATM and other services as required (VPNs)
- Gigapops (aggregation points)
- vBNS is I2 and Gigapop interconnect fabric
- interconnection and peering
- Large scale and cross domain network mgmt.
- concurrent production and network research

MORPHNET (Virtual Networks)

NGI Summary: Security Issues for Goal 2

- Encryption at Ultra High Speeds
- network probes for management, monitoring, and validation of services vs Intrusion detection (traceroutes, pings,...)
- Certificate Authorities and Infrastructure (including large revocation lists)
- Support for dynamic virtual networks
- secure software updates and patches

Summary: Security Issues for Goal 2, ctd

- interconnection/ peering of Nets
 - privacy of customer list and performance data
 - secure exchange of routes / peering
 - propagation and support of multiple QOS and security policies
 - dynamic construction of virtual networks across ISP
 - cross domain/NET Intrusion detection and tracing
 - Help desk and trouble ticket across ISPs

Goal 3: Applications

- Applications
 - Medicine
 - Crises Management
 - Basic Sciences
 - Education
 - Environment
 - Manufacturing
 - Federal Services

- Characteristics
 - DistributedComputing
 - Remote Operation
 - Digital Libraries
 - Collaboratories
 - Privacy / Security

NGI Summary: Security Issues for Goal 3

- Application controlled dynamic NETS
- Application invoked multiple security policies
- Application controlled QOS

NGI FY 1998 Proposed \$105* Million Budget (\$ in Millions)

	DoD/DARPA	NSF	DoE	NASA	NIST	NLM/NIH*	TOTAL
Goal 1:	20	2	6	2	2		32
Technologies							
Goal 2:	20	7	25	3			55
Advanced							
Connectivity							
Goal 3:		1	4	5	3	5	18
Applications							
Total	40	10	35	10	5	5	105

*Note: The initiative was originally proposed at \$100 million per year with funding expected from additional agencies who want to be part of the program. NLM/NIH is the first example of an additional NGI initiative partner. Therefore, the total proposed budget is now \$105 million allocated as shown above.

NGI Management Structure

see: http://www.ccic.gov

NGI Participants: DARPA, DOE, NASA, NIH, NIST, NOAA, NSF

- Michael Ackerman, NIH
- Robert Aiken, DoE
- Debra Bailey, NASA
- Richard desJardins, NASA
- Richard DuBois, NIH
- Phil Dykstra, DoD
- Don Endicott, DoD
- Christine Falsetti, NASA
- Jim Fowler, NIST
- Ken Freeman, NASA
- Bert Hui, DARPA

- Gary Koob, DARPA
- Mark Luker, NSF
- Doug Montgomery, NIST
- Hilarie Orman, DARPA
- Alex Poliakoff, Dept. of Education
- Mary Anne Scott, DoE
- George Seweryniak, DoE
- Carl Stanton, NOAA
- Dave Staudt, NSF
- Bill Turnbull, NOAA

More Information ...

- Next Generation Internet
 - http://www.ngi.gov
- Internet 2 (university consortium)
 - http://www.internet2.edu
- NASA Research and Education Network
 - http://www.nren.nasa.gov

- DOE
 - http://www.es.net
 - http://www.anl.gov/ECT/Public/research/morphnet.html
- DARPA
 - http://www.ito.darpa.mil/ ResearchAreas.html
- NSF's Connections
 - http://www.vbns.net

Goal 1: Technologies

- Network Engineering
 - Planning and Simulation
 - network planning language
 - run time tools
 - Monitoring
 - gathering data
 - network engineering
 - network management
 - run time (i.e. dynamic) analysis
 - QOS and drill down analysis tools
 - Integration
 - engineering tools, switching/routing, and transmission to work smoothly

Goal 1: Technologies ctd.

- Network Engineering ctd.
 - Data Delivery
 - routing / switching (secure?)
 - best effort vs priority traffic
 - dynamic routing vs virtual circuits (VCs)
 - greedy admission vs guaranteed delivery
 - flat rate vs variable costing
 - multicast (reliable vs unreliable)
 - real time protocols and traffic

Goal 1: Technologies ctd.

- Network Engineering ctd.
 - Managing Lead User Infrastructure (fast, complex, dynamic)
 - Concurrent Production and Network Research traffic (virtual networks)
 - (de) aggregation of tributaries
 - operation and management strategies and tools
 - scaling (speed, size, complexity)
 - user requirements that are orders of magnitude larger and more complex that normal applications and traffic

Goal 1: QOS (end-to-end)

- Baseline QOS Architecture
 - framework of models, languages and protocols to specify QOS
 - negotiate acceptable tradeoffs
 - receive feedback on delivered QOS (enable adaptation)
 - APIs supporting propagation of QOS constraints and feedback
 - admission control
 - accounting / costing
 - prioritization
- Drill Down Technologies
 - support QOS across ("drill down") layers
 - expose interfaces to QOS and network capabilities
 - emphasis on OS, communication libraries, middleware services and distributed objects

Goal 1: Security

- secure and fair means for users to access network resources (e.g. QOS)
- smart network management
- inter-network peering (e.g. surety of routing updates)
- nomadic/remote access
- Public Key Infrastructure (industry interoperable)

Goal 2: 10 sites at 1000x

- end-to-end gigabits and terabits to Applications
- end system 1000x interfaces (e.g. HIPPI 64)
- Operating System (OS) and end system architectures
- 1000x network management tools / capabilities
- (de) aggregation of high speed tributaries
- WDM at WAN, LAN and Local Loop
- optical, electrical, hybrid hardware
- interconnect to 100x networks

Goal 2: 100 sites at 100x

- end-to-end 100 megabits and up
- 100+ Universities, Labs, and Federal Centers
- supports applications (goal 3) using advanced network technologies (goal 1)
- IPv4 minimum bearer service
- IPv6 in future
- ATM and other services as required (VPNs)
- Gigapops (aggregation points)
- vBNS is I2 and Gigapop interconnect fabric
- concurrent production and network research

Goal 2:100 sites at 100x ctd

- Interconnection
 - at L2 and L3 among Federal Networks / Carriers
 - QOS (IP and ATM)
 - Management tools and capabilities (NOCs, Helpdesks, ...)
 - Monitoring, Analysis and Accounting (settlements) tools
 - routing / peering exchanges between Federal networks and Federal networks at Gigapops (when appropriate)
 - Flexible and dynamic methods for setting up interagency virtual networks

Goal 2: 100 sites at 100x ctd

- Network Management
 - distributed help desk
 - security and authentication methods
 - gigapop and agency network NOCs (NOC to NOC)
 - applications can schedule bandwidth and services
 - network management tools (existing and new)